Finite Element Approximation of the Parabolic Fractional Obstacle Problem

نویسندگان

  • Enrique Otárola
  • Abner J. Salgado
چکیده

We study a discretization technique for the parabolic fractional obstacle problem in bounded domains. The fractional Laplacian is realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic equation posed on a semi-infinite cylinder, which recasts our problem as a quasi-stationary elliptic variational inequality with a dynamic boundary condition. The rapid decay of the solution suggests a truncation that is suitable for numerical approximation. We discretize the truncation with a backward Euler scheme in time and, for space, we use first-degree tensor product finite elements. We present an error analysis based on different smoothness assumptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Estimates for a Semidiscrete Parabolic Integrodifferential Control on Multimeshes

We extend the existing techniques to study semidiscrete adaptive finite element approximation schemes for a constrained optimal control problem governed by parabolic integrodifferential equations. The control problem involves time accumulation and the control constrain is given in an integral obstacle sense. We first prove the uniqueness and existence of the solution of this optimal control pro...

متن کامل

A Two-Grids/Projection Algorithm for Obstacle Problems

In order to emphasize the possible relation between discontinuous and continuous approximations on different meshes, a two-grids method for the resolution of parabolic variational inequality problems is presented. The numerical methodology combines a time splitting algorithm to decouple a diffusion phenomenon from an obstacle problem. The diffusion problem is solved by using finite differences,...

متن کامل

Numerical solution of nonstationary problems for a space-fractional diffusion equation

An unsteady problem is considered for a space-fractional diffusion equation in a bounded domain. A first-order evolutionary equation containing a fractional power of an elliptic operator of second order is studied for general boundary conditions of Robin type. Finite element approximation in space is employed. To construct approximation in time, regularized twolevel schemes are used. The numeri...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

Convergence rates for the classical, thin and fractional elliptic obstacle problems.

We review the finite-element approximation of the classical obstacle problem in energy and max-norms and derive error estimates for both the solution and the free boundary. On the basis of recent regularity results, we present an optimal error analysis for the thin obstacle problem. Finally, we discuss the localization of the obstacle problem for the fractional Laplacian and prove quasi-optimal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016